Lesson 4. Blending Models

Example 1. The Hoosier Gasoline Company produces two blends of gasoline, regular and premium, by mixing three different types of oil. Each type of oil comes in barrels and has its own costs and octane ratings, which are given below:

Туре	Cost/Barrel	Octane Rating
1	45	93
2	35	90
3	20	87

Premium gasoline must consist of at least 30% Type 1 oil. In addition, the minimum weighted average octane rating and minimum production requirements for each blend are as follows:

Blend	Weighted Average Octane Rating	Demand
Regular	89	15,000 barrels
Premium	91	12,500 barrels

Formulate a linear program that determines how to meet the demand for each blend of gasoline at minimum cost.

Ex. 2 barrels of Type 1, 1 barrel of Type
$$\lambda$$

 \Rightarrow 3 barrels of blended gas
Weighted average octane rating = $\frac{2}{3}(13) + \frac{1}{3}(90)$ fraction of the
regular $P_1 = \#$ barrels of Type 1 used in regular $P_1 = \#$ barrels of Type 1 used in promium
 R_2, P_2, R_3, P_3 defined similarly $+81 \frac{R_3}{R_1 + R_2 + R_3} \neq 89$
minimize $45(R_1 + P_1) + 35(R_2 + P_2) + 20(R_3 + P_3)$ (total cost)
subject to $P_1 \ge 0.3(P_1 + P_2 + P_3)$ (premium has at least 30% Type 1)
 $93R_1 + 90R_2 + 87R_3 \ge 89(R_1 + R_2 + R_3)$ (regular octane)
 $P_1 + P_2 + P_3 \ge 12500$ (regular demand)
 $P_1 + P_2 \ge 0, R_3 \ge 0$
 $R_1 \ge 0, R_2 \ge 0, R_3 \ge 0$
 $R_1 \ge 0, R_2 \ge 0, R_3 \ge 0$
 $R_1 \ge 0, P_2 \ge 0, P_3 \ge 0$

Example 2. You are a portfolio manager in charge of a bank portfolio with \$10 million to invest. There are 4 different securities available:

Bond	Bond	Years to	Rate of return
name	type	maturity	at maturity (%)
1	Municipal	9	4.3
2	Agency	15	2.7
3	Government	4	2.5
4	Government	3	2.2

X1 + X2 + X2 + X4

X, + K2 + X3 + X4

4×3

The bank has some policies that limit how you can construct your portfolio:

- 1. Municipal and agency bonds must total at least \$4 million
- 2. The (weighted) average years to maturity of the portfolio must not exceed 6 years
- 3. Bonds cannot be "shorted" (cannot buy negative amounts of bonds)

Write a linear program that determines a portfolio of the above securities that maximizes earnings.